Monte Carlo simulation of the shapes of domains in phospholipid monolayers

نویسندگان

  • M. A. Mayer
  • T. K. Vanderlick
چکیده

The dispersed domains which result from phase separation in phospholipid monolayers have long been known to exhibit complex and intriguing geometries. Over the last decade, much work has gone into the theoretical prediction of these shapes using energy minimization calculations. While such studies have provided much insight into the behavior of domain shapes, they ignore the effect of entropy and thus are truly applicable only as the temperature approaches absolute zero. In this paper, we present a Monte Carlo approach for the prediction of domain shapes through simulation, thereby introducing temperature as an explicit parameter. Where applicable, results from this simulation are compared to prior shape calculations and to experimental results. We find that the first order transition predicted between circular and bilobed domains applies only at low temperature. Moreover, we find that bilobed domains should only be found when the domain elongation occurs slowly; rapid elongation produces multiple branched domains. Finally, we find that the width of these branches in elongated domains is independent of both the number of branches and the size of the domain. @S1063-651X~97!01701-7#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Monte Carlo Simulation in the Assessment of European Call Options

In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...

متن کامل

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

Monte Carlo Simulation of Multiplication Factor in PIN In0.52Al0.48As Avalanche Photodiodes

In this paper, we calculate electron and hole impactionization coefficients in In0.52Al0.48As using a Monte Carlo modelwhich has two valleys and two bands for electrons and holesrespectively. Also, we calculate multiplication factor for electronand hole initiated multiplication regimes and breakdown voltagein In0.52Al0.48As PIN avalanche photodiodes. To validate themodel, we compare our simulat...

متن کامل

Comparison dose distributions from gamma knife unit 4C with CT data and non-CT data options of beamnrc code

Todays gamma knife radiosurgery is used widely for treatment of very small brain tumors. In order to investigate accuracy of dosimetry and treatment planning calculations, using Monte Carlo simulation with dedicated code named as beamnrc including non-CT data and CT data options is necessary. The aim of this study is choosing the best options in order to have an accurate tools based on their ad...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996